skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lapizco‐Encinas, Blanca_H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Miniaturized electrokinetic methods have proven to be robust platforms for the analysis and assessment of intact microorganisms, offering short response times and higher integration than their bench‐scale counterparts. The present review article discusses three types of electrokinetic‐based methodologies: electromigration or motion‐based techniques, electrode‐based electrokinetics, and insulator‐based electrokinetics. The fundamentals of each type of methodology are discussed and relevant examples from recent reports are examined, to provide the reader with an overview of the state‐of‐the‐art on the latest advancements on the analysis of intact cells and viruses with microscale electrokinetic techniques. The concluding remarks discuss the potential applications and future directions. 
    more » « less
  2. Abstract The selective positioning and arrangement of distinct types of multiscale particles can be used in numerous applications in microfluidics, including integrated circuits, sensors and biochips. Electrokinetic (EK) techniques offer an extensive range of options for label‐free manipulation and patterning of colloidal particles by exploiting the intrinsic electrical properties of the target of interest. EK‐based techniques have been widely implemented in many recent studies, and various methodologies and microfluidic device designs have been developed to achieve patterning two‐ and three‐dimensional (3D) patterned structures. This review provides an overview of the progress in electropatterning research during the last 5 years in the microfluidics arena. This article discusses the advances in the electropatterning of colloids, droplets, synthetic particles, cells, and gels. Each subsection analyzes the manipulation of the particles of interest via EK techniques such as electrophoresis and dielectrophoresis. The conclusions summarize recent advances and provide an outlook on the future of electropatterning in various fields of application, especially those with 3D arrangements as their end goal. 
    more » « less
  3. Abstract Nonlinear electrokinetics (EK), specifically electrophoresis of the second kind, dielectrophoresis (DEP) and electrorotation (EROT), have gained significant interest recently for their flexibility and labeless discriminant manner of operation. The current applications of these technologies are a clear advancement from what they were when first discovered, but also still show strong signs of future growth. The present review article presents a discussion of the current uses of microscale nonlinear EK technologies as analytical, sensing, and purification tools for microorganisms. The discussion is focused on some of the latest discoveries with various nonlinear EK microfluidic techniques, such as DEP particle trapping and EROT for particle assessments, for the analysis of microorganisms ranging from viruses to parasites. Along the way, special focus was given to key research articles from within the past two years to provide the most up‐to‐date knowledge on the current state‐of‐the‐art within the field of microscale EK, and from there, an outlook on where the future of the field is headed is also included. 
    more » « less
  4. Abstract Mathematical modeling is a fundamental component in the development of new microfluidics techniques and devices. Modeling allows for the rapid testing of new system configurations while saving resources. Microscale electrokinetic (EK) techniques have significantly benefited by the advances in modeling programs and software packages. However, EK phenomena are complex to model, as they dynamically affect system characteristics, including the physical properties of the particles and fluid within the system. Insulator‐based dielectrophoresis (iDEP) is an EK technique that has received important attention during the last two decades. In particular, numerous research groups that study iDEP systems employ a combination of modeling and experimentation for developing new iDEP systems. An important fraction of these research groups has adopted the practice of employing “correction factors” to account for EK phenomena that cannot be accurately predicted in their models due to model complexity and limitations in computing resources. The present review article aims to provide the reader with an overview of the most common approaches in the use of correction factors for the modeling of iDEP systems. 
    more » « less
  5. Abstract Phages used for phage therapy of multidrug resistant bacteria must be highly purified prior to use. There are limited purification approaches that are broadly applicable to many phage types. Electrokinetics has shown great potential to manipulate phages, but obstructions from the cell debris produced during phage propagation can severely diminish the capacity of an electrokinetic device to concentrate and purify phage samples. A multipart insulator‐based electrokinetic device is proposed here to remove the larger, undesirable components of mixtures from phage preparations while transferring the freshly purified and concentrated sample to a second stage for downstream analysis. By combining the large debris prescreen and analysis stages in a streamlined system, this approach simultaneously reduces the impact of clogging and minimizes the sample loss observed during manual transferring of purified samples. Polystyrene particles were used to demonstrate a diminished sample loss of approximately one order of magnitude when using the cascade device as opposed to a manual transfer scheme. The purification and concentration of three different phage samples were demonstrated using the first stage of the cascade device as a prescreen. This design provides a simple method of purifying and concentrating valuable samples from a complex mixture that might impede separation capacity in a single channel. 
    more » « less
  6. Abstract This review is in support of the development of selective, precise, fast, and validated capillary electrophoresis (CE) methods. It follows up a similar article from 1998, Wätzig H, Degenhardt M, Kunkel A. “Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications,” pointing out which fundamentals are still valid and at the same time showing the enormous achievements in the last 25 years. The structures of both reviews are widely similar, in order to facilitate their simultaneous use. Focusing on pharmaceutical and biological applications, the successful use of CE is now demonstrated by more than 600 carefully selected references. Many of those are recent reviews; therefore, a significant overview about the field is provided. There are extra sections about sample pretreatment related to CE and microchip CE, and a completely revised section about method development for protein analytes and biomolecules in general. The general strategies for method development are summed up with regard to selectivity, efficiency, precision, analysis time, limit of detection, sample pretreatment requirements, and validation. 
    more » « less
  7. Abstract The present communication illustrates the use of simple electrokinetic devices for the assessment of the zeta potential of submicron polystyrene particles. A combination of manual and automatic particle tracking was employed. This approach allows for characterizing particles in the same conditions and devices in which they can be separated, e.g. dielectrophoretic separations; making the resulting data readily applicable. 
    more » « less
  8. Abstract Insulator‐based dielectrophoresis (iDEP) is the electrokinetic migration of polarized particles when subjected to a non‐uniform electric field generated by the inclusion of insulating structures between two remote electrodes. Electrode spacing is considerable in iDEP systems when compared to electrode‐based DEP systems, therefore, iDEP systems require high voltages to achieve efficient particle manipulation. A consequence of this is the temperature increase within the channel due to Joule heating effects, which, in some cases, can be detrimental when manipulating biological samples. This work presents an experimental and modeling study on the increase in temperature inside iDEP devices. For this, we studied seven distinct channel designs that mainly differ from each other in their post array characteristics: post shape, post size and spacing between posts. Experimental results obtained using a custom‐built copper Resistance Temperature Detector, based on resistance changes, show that the influence of the insulators produces a difference in temperature rise of approximately 4°C between the designs studied. Furthermore, a 3D COMSOL model is also introduced to evaluate heat generation and dissipation, which is in good agreement with the experiments. The model allowed relating the difference in average temperature for the geometries under study to the electric resistance posed by the post array in each design. 
    more » « less